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ABSTRACT 

 
The development of the concepts within 3DVIEWNIX and of the software system 3DVIEWNIX itself dates back to the 
1970s. Since then, a series of software packages for Computer Assisted Visualization and Analysis (CAVA) of images 
came out from our group, 3DVIEWNIX released in 1993, being the most recent, and all were distributed with source 
code. CAVASS, an open source system, is the latest in this series, and represents the next major incarnation of 
3DVIEWNIX. It incorporates four groups of operations: IMAGE PROCESSING (including ROI, interpolation, filtering, 
segmentation, registration, morphological, and algebraic operations), VISUALIZATION (including slice display, 
reslicing, MIP, surface rendering, and volume rendering), MANIPULATION (for modifying structures and surgery 
simulation), ANALYSIS (various ways of extracting quantitative information). CAVASS is designed to work on all 
platforms. Its key features are: (1) most major CAVA operations incorporated; (2) very efficient algorithms and their 
highly efficient implementations; (3) parallelized algorithms for computationally intensive operations; (4) parallel 
implementation via distributed computing on a cluster of PCs; (5) interface to other systems such as CAD/CAM 
software, ITK, and statistical packages; (6) easy to use GUI. In this paper, we focus on the image processing operations 
and compare the performance of CAVASS with that of ITK. Our conclusions based on assessing performance by utilizing 
a regular (6 MB), large (241 MB), and a super (873 MB) 3D image data set are as follows: CAVASS is considerably 
more efficient than ITK, especially in those operations which are computationally intensive. It can handle considerably 
larger data sets than ITK. It is easy and ready to use in applications since it provides an easy to use GUI. The users can 
easily build a cluster from ordinary inexpensive PCs and reap the full power of CAVASS inexpensively compared to 
expensive multiprocessing systems which are less efficient for CAVA operations. 
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1.  INTRODUCTION 
 
1.1 Background 
 
A long-standing activity in medical imaging that is begging for a name (and an acronym) is what we refer to as 
Computer Aided Visualization and Analysis (CAVA for short). When images are acquired for a body region B, there is 
usually an object system O of study, which is simply a set of organs within the body region B. The purpose of image 
acquisition is usually to fulfill some combination of the following six objectives: (a) the diagnosis of a disease of O, (b) 
understanding the natural course of a disease of O, (c) understanding the function of O, (d) planning a treatment for a 
disease of O, (e) studying the effects of a treatment for a disease of O, and (f) medical education related to O. Given a set 
S of multidimensional, potentially multimodality, images acquired for a given body region B, to fulfill the above six 
objectives, the following four types of computerized operations are generally needed: (E1) image processing, (E2) 
visualization, (E3) manipulation, and (E4) analysis. The purpose of E1 is to process the images in S so as to 
enhance/define/extract model information about O. The commonly used operations include interpolation, filtering, 
registration, segmentation, morphological operations, and image algebra. The goal of E2 is to visualize O in its true 
form, shape, and function. Various forms of slice display, and surface and volume rendering come under this group. E3  
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allows the object information obtained in E1 to be altered; for example, virtual surgical operations can be performed on 
the structures, which are computer representations of O derived from S via operations in E1. The aim of E4 is to derive 
quantitative information about the morphology, architecture, kinematics, mechanics, and other functions of the objects in 
O. The four groups of operations are interdependent for their effectiveness. 
 
Some comments are in order regarding the choice of the phrase Computer Aided Visualization and Analysis, or CAVA, 
vis-à-vis another important area, which has come to be commonly known as CAD, or Computed Aided Diagnosis. In our 
view, CAVA is a much broader activity than CAD and predates CAD. While the latter focuses mainly on diagnosis, the 
former encompasses activities related to the development of new visualization, image processing, and quantitative image 
analysis tools to facilitate CAD, to facilitate new therapeutic strategies, and to help in basic clinical research, education, 
and training. Although there is some overlap, in terms of operations between CAVA and CAD, CAVA has its own unique 
challenges, requirements, and solutions. 
 
The subject matter of this paper is a software system for CAVA developed in our group, which is on the verge of being 
completed and released. The name of the software system is CAVASS, which stands for “CAVA Software System”. The 
methods, principles, and algorithms underlying CAVASS and the development of CAVASS itself dates back to the 1970s 
in our group [1]. Since then, a series of software packages [2-5] for CAVA came out from our group, 3DVIEWNIX 
released in 1993, being the most recent, and all research software packages [1-3] were distributed with source code. 
CAVASS, an open source system, is the latest in this series, and represents the next major incarnation of 3DVIEWNIX. 
 
1.2 Requirements of CAVA Software 
 
There has been a steady increase during the past 25 years and a rapid increase during the past 10 years in activities 
related to CAVA. With the increased focus on Molecular Imaging Techniques and on the efficacy (higher speed, higher 
spatial and temporal resolution, and lower dose) of x-ray CT, and because of the availability of diffusion/perfusion 
imaging techniques and combined PET/CT, the CAVA activities are likely to continue to increase. Keeping these exciting 
current developments in mind, we believe that any software system for CAVA, particularly open-source, should satisfy 
the following seven major requirements RQ1-RQ7. (RQ1) portability, (RQ2) ease of use, (RQ3) freedom from size 
restrictions, (RQ4) adequacy of speed of processing, (RQ5) comprehensiveness, (RQ6) easy interfaceability to other 
packages, and (RQ7) availability/cost. 
 
With the currently available software engineering tools, portability (RQ1) is easy to provide. The design of ITK [6] 
reflects this fact well. However, the portability issue becomes more complex if the user interface is considered in the 
software. Ease of use (RQ2) has different implications depending on the target user group. We believe that there are four 
types of user groups in CAVA: (UG1) CAVA technology developers, (UG2) CAVA application developers, (UG3) users 
of CAVA in clinical research, (UG4) clinical end users of CAVA for day-to-day patient care. Open-source software 
activities are not suited for UG4, mainly due to the safety, legal, and financial issues related to patient care. For UG1, 
RQ2 implies that the software system should provide a rich set of basic library functions for handling image and non-
image data structures, graphical operations, display operations, and low-level image computing operations, and it should 
be straightforward to implement users’ own new algorithms for any of the elements E1-E4 by using these library 
functions. For UG2, what RQ2 means is that the software system should provide a rich set of high-level functions 
incorporating a rich variety of algorithms for all of E1-E4, and it should be straightforward to develop a new application 
by utilizing these functions within the environment of the software system. UG3 is a distinct group of users, which is 
currently rapidly growing in Radiology and in various other medical disciplines. The meaning of ease of use for this 
group is that it should be straightforward to utilize the software system in a clinical research project or trial, and tools to 
make whatever modifications are needed (such as scripting, creating a new procedure) should be available in the 
software system. RQ3 implies that, within reasonable limits, there should not be restrictions on the size of the images, 
dimensionality of the images, the number of components in the case of vectorial images, and on the number of bits 
allowed for each component value. Adequacy of speed of processing (RQ4) means that, for most key operations under 
E1-E4, by using well-known and important methods, the speed of processing on a commonly available computer 
platform of reasonable cost should be acceptable. “Acceptable speed” ideally means interactive response or better for 
visualization and manipulation tasks, and within a few minutes for other tasks. RQ5 implies that the software system 
should incorporate all key methods for all four elements E1-E4 of CAVA. RQ6 implies that the software should provide 
ready interface to other CAVA and non-CAVA systems. Availability/cost (RQ7) means that the software should be open-
source/conditional open-source and as inexpensive as possible to obtain, install, operate, and update. 
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1.3 A Review of CAVA Software Development Activities 
 
Although 2D images were available since the invention of x-rays, CAVA for 3D images started in the 1970s with the 
advent of x-ray CT. The earliest known software development [2] for CAVA also started in the 1970s. This software 
implemented a digital surface detection algorithm [7], linear interpolation, digital surface rendering [8], and some simple 
surface quantification techniques [9]. A vastly more streamlined and improved version of the software named 
DISPLAY82 [3] was released in late 1982 which removed image size restrictions, established a standard for image and 
structure format, and recognizing the difficulties in segmentation, incorporated a gesture-controlled interactive 
segmentation method [10]. This software, in spite of its machine dependency (Data General Eclipse mini-computer 
driving a Comtal display frame buffer), was distributed with source code to over 150 sites worldwide within the next 2 
years. This was the first “open source” activity that we know of in CAVA in spite of severe handicaps due to the lack of 
software, graphics, and data standards for portability. Earlier, DISPLAY [2] was implemented in 1980 and 1981 on the 
Independent Physician Display Console of the GE 8800CT/T scanner, which GE demonstrated at RSNA in 1981. This 
seems to have been the first attempt to transfer the 3D CAVA technology to medical imaging industry and the first 
industrial entry of this technology. Subsequently all major CT scanner vendors, (Siemens, Philips, Picker, Technicare, 
Thompson CGR, Elsinct, Toshiba) started a 3D CAVA software development activity. The first commercial package for 
3D CAVA was 3D83 [4]. It was based on DISPLAY82 and was marketed by GE. Although developed in the computer 
graphics world, there was another early package called Movie-BYU [11] developed at Brigham Young University, 
Provo, Utah, which took the approach of polygonal surface representation. It did not have tools to handle images. Slice-
by-slice contour tiling methods [12], which, were in vogue then, were used to go from images to surfaces. Although 
there was ongoing research on CAVA at several centers at this time, the above description of software development for 
distribution constitutes the earliest historic phase of 3D CAVA. 
 
There were several key developments during the mid 1980s, which cast a lasting impact on CAVA and related software 
development. The first key development was the introduction of workstations into the computing milieu, which provided 
more computing resources and also removed the problems related to the development of machine-dependent graphics 
interfaces to frame buffers. As a consequence, workstation-based software development became an active area. The 
development of several subsequently well-known software (and hardware) products started around this time, notable 
among these being Analyze [13], products from Contour Medical systems [14] (which subsequently changed name to 
CEMAX), Dimensional Medicine, Inc. [15], Phoenix Data Systems [16], IBM [17], Multi-Planar Diagnostic Imaging 
[18], Virtual Imaging [19], ISG Technologies [20], software developed by Vannier et al. [21] which was utilized in the 
early products of Siemens, and the software developed by Hohne’s group which subsequently came to be known as 
Voxel Man [22]. All these products provided some elementary image processing operations (E1), voxel-based surface 
rendering and arbitrary plane (and curved surface) reslicing of 3D image data for visualization (E2), and some analysis 
techniques (E4). 
 
The second important development was the advent of MRI in the 1980s. This gave rise to a spurt of activity in E1, 
particularly in image segmentation [23], image filtering [24], image inhomogeneity correction [25], image interpolation 
[26], and importantly, in image registration [27] to match among CT, MRI and PET images of the same subject. With the 
increasing data volume and demand for interactive speed of processing, solutions were sought for improving the speed 
of processing. For some reason, the focus on speed was always as related to visualization. Hardware accelerator graphics 
boards and specialized rendering engines were built not just for CAVA (or only for visualization in CAVA) with medical 
imaging in mind but to cater to other computer graphics and scientific visualization applications also. Notable among 
these developments were the TAAC and other boards from SUN Micro Systems, the Silicon Graphics rendering engines, 
the AT&T Pixel Machine, the workstations from Stellar and Ardent (the two subsequently merged and became Stardent), 
and the workstation from Dynamic Digital Displays. 
 
The third key development was the advent of volume rendering [28, 29]. The key idea behind volume rendering was to 
render 3D regions (rather than just surfaces of structures) by using opacity and color to enhance or suppress various 
aspects of the objects as they manifest themselves in the 3D image. Pixar brought out a special workstation to perform 
rapid hardware-based volume rendering. Although its speed was nowhere near real time, it was much faster than 
software-based rendering on other powerful workstations at that time. Other vendors (Silicon Graphics, Stellar, Ardent, 
Stardent) subsequently provided hardware-assisted capabilities for volume rendering. A notable software system of the 
1980s that focused mainly on image processing was Khoros [30]. 
 
From the 1990s till now, there were additional major developments, which brought the CAVA tools from research labs to 
the clinic and which also brought along with them new challenges. The major developments include the tremendous 
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advances made in CT technology, the emergence of a variety of newer MRI modes, tremendous increase in the power of 
personal computers, computer aided diagnosis, and a variety of new applications of improved CT and MRI. Multi-slice 
helical CT [31] has substantially improved image quality especially because of the considerable increase in the speed of 
data acquisition. This has come to the point where, in the near future, volume image acquisition for an entire organ in a 
fraction of a second will become a reality. The challenges this has brought are the need to handle large image data rates 
and alternative and more practical methods of visualizing these data than the traditional radiological method of viewing 
the slices, which has already become impractical. The newer modes of MRI such as perfusion and diffusion MRI and 
fMRI [32] have brought new challenges for processing, displaying, and analyzing these images. The PCs have become so 
powerful and inexpensive that they have made expensive scientific workstations a luxury item and inessential in CAVA 
labs. 
 
1.4. Current Software Systems and Limitations 
 
During the past 10 years, the software development activity for CAVA has increased considerably making several open-
source systems available. In the rest of this section, we shall review the currently available software systems and 
examine their limitations that were considered in CAVASS development. Our survey here considered most of the well-
known software systems including Analyze [13], DDV (Digital Data Viewer) [33], GIMP [34], Image/J [35], IDL 
(Interactive Data Language) [36], ITK [6] (Insight Toolkit), Java [37], Khoros [30], Mathematica [38], Matlab [39], 
OpenDX (Open Data Explorer) [40], Photoshop [41], Volview [42], VTK (Visualization Toolkit) [43], VXL (Vision-
something-Libraries) [44], and 3D Slicer [45]. Analyze, IDL, Khoros, Mathematica, Matlab, Photoshop, and Volview 
are excellent commercial software packages. They are not freely available nor are they available as open source. 
Academic prices for these packages for a single user on a Microsoft Windows platform are typically subsidized. 
Platforms other than Windows are often more expensive as are commercial licenses. These fees typically include one 
year of updates. After that period of time, additional fees are required to obtain updated software. Only a few of these 
vendors offer source code (for an additional fee). Additionally, IDL, Khoros, Mathematica, and MATLAB are not 
complete medical imaging applications but libraries of functions that are callable from their own respective proprietary 
computer programming languages. Note that in the case of these proprietary languages, even experienced software 
developers who are typically already familiar with C++ must learn these programming languages. Matlab provides some 
support for libraries that are callable from C/C++ and FORTRAN. Analyze is a complete application with the Developer 
Add-On available for the programming of custom applications. Photoshop is exclusively oriented towards 2D image 
processing and manipulation. Photoshop may be extended by user-written plugins. A DICOM plugin is available for 
Photoshop to enable it to read single DICOM image files (2D slices). 
 
The DDV (Digital Data Viewer, free, open source, Windows only) software available was not afforded further 
consideration because it is primarily oriented toward EEG data and not 2D or higher dimensional imagery. Another DDV 
software package, available from http://www.compgeomco.com/, is freely available as binary executables for a variety 
of platforms including Windows, Linux, Unix, and Mac. Source code is not available, and even if source code was freely 
available, DDV uses Qt, which costs $2330 per person per development platform. It is primarily a complete application 
but is limited to the display of slice data (read in from TIFF, raw, and a proprietary format) and the creation and display 
of iso-surfaces from manually segmented slice data. GIMP is freely available as open source on Unix/Linux only. There 
is no support for DICOM and it is exclusively oriented towards 2D image processing and manipulation. Image/J is a 
Java (and therefore, platform independent) outgrowth of the NIH Image application that is available only for the Mac. It 
is primarily oriented towards 2D images but can combine 2D images into “stacks” of slices. 3D display is limited to 
surface plots only. Image/J can import DICOM data. Source code is freely available. ITK, funded by the National 
Library of Medicine, is also freely available as open source on a wide variety of platforms. It is a programmer’s toolkit 
that is specifically geared towards medical image segmentation and registration. It requires a software developer with 
extensive C++ knowledge (even more so than VTK). Similarly to VTK, no user interface is provided, but, in contrast with 
VTK, it does contain a rich variety of algorithms for image processing (E1) that are specific to medical imaging. CAVASS 
we propose incorporates easy mechanisms to interface to ITK. 
 
Our consideration now turns to the Java programming language (including the Java Advanced Imaging (JAI), Java2D, 
and Java3D APIs). Our experience shows that medical CAVA demands the utmost in speed and efficiency due to the 
voluminous higher dimensional and/or multimodality data. Simple, prototype Java-based applications that we developed 
required inordinate amounts of memory and executed far more slowly than their C++ counterparts. We considered using 
the Java Native Interface (JNI) which allows one to combine Java and C++ code but that requires developers to be 
experts in two programming languages with no benefit over the solution that we propose below. In fact, a JNI version of 
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3DVIEWNIX may even be slower because of the conversion between Java and C++ data structures. In the future, Java 
compilers (such as GCJ) which compile Java to native machine code may make Java as efficient as C++ but GCJ is still 
in infancy as it does not yet support Swing (the Java API for building user interface which is responsible for drawing 
buttons, menus, windows, etc.). And similarly to Matlab, IDL, VTK, and ITK, Java does not provide a suite of medical 
imaging and visualization applications but is a general purpose, higher level programming language upon which these 
applications may be built. If Java was adopted, we would have had to rewrite all existing 3DVIEWNIX in a different 
programming language. 
 
OpenDX is an X11-based, open source application that is freely available for Unix platforms. OpenDX is not oriented 
towards medical imaging applications. It does not contain any segmentation or registration methods. It does, however, 
perform surface and volume rendering. The DICOM format is not supported. A stereo viewing module, DXStereo, has 
also been contributed, but, according to the documentation, this module runs only on IBM RS6000 and SGI R4000 
platforms. Volview is an application that is primarily oriented towards volume rendering. One may also filter and 
annotate data. It supports a wide variety of input data formats and is available for a wide variety of platforms (except 
Mac). Volview is one of the few packages (other than 3DVIEWNIX and CAVASS) that interface with CAD/CAM 
(Computer Aided Design/Computer Assisted Manufacturing) packages. VTK is freely available as open source on a wide 
variety of platforms. It is not specifically oriented towards medical image processing or medical visualization but it can 
be used to develop such applications if one is a software developer with solid C++ and Tcl/Tk experience. As a toolkit, 
no user interface (let alone one tailored to image processing or medical imaging) is provided. It does not include any 
medical image processing or visualization applications either. It would require a great deal of effort to use VTK as the 
basis of CAVASS because none of the existing 3DVIEWNIX applications would be directly transferable into its 
framework, and, therefore, would have to be rewritten. Further, since VTK does not provide a multidimensional (and 
multimodality) user interface dedicated to medical imaging and visualization as 3DVIEWNIX currently does, this would 
have to be developed as well. VXL is an open source C++ library that grew out of TargetJr and Image Understanding 
Environment (IUE). It is primarily oriented towards the analysis of 2D surveillance satellite imagery with the goal of 
inferring 3D geometry. 3D Slicer is an open source, freely available application for the analysis and display of 3D 
medical imagery. It also includes basic automatic registration and semi-automatic segmentation capabilities. It is 
primarily designed to be used for surgical planning. 
 
Other recently introduced systems include MITK [46], another system by the same name [47], and IGSTK [48]. The 
Medical Imaging Interaction Toolkit [46] and the Medical Imaging Toolkit [47] are similar and independent open-source 
systems that reuse and extend the capabilities of VTK [43] and ITK [6]. The Image-Guided Surgery Toolkit [48] is an 
open-source software library that provides the basic components needed to develop image-guided surgery applications, 
providing functionality for tracking, reading, registering, and calibrating images based on the programs available in ITK 
and VTK. There is a dichotomy between commercial and non-commercial software systems. Since the availability of 
source in an open manner is of primary consideration for the theme of this paper, feature-filled and otherwise excellent 
commercial packages such as Analyze and IDL do not enter into our further discussion. 
 
In the non-commercial group, considering the features, as already discussed, the most prominent candidates that remain 
are 3DVIEWNIX, ITK, VTK, and 3DSlicer. VTK and 3DSlicer are not strong in E1, E3, and E4. ITK on the other hand is 
very rich in E1 (image processing functions) but has no functions for E2, E3, and E4. Further it caters to only the user 
group UG1. 3DVIEWNIX has its own limitations. Although it has a variety of functions under E1, ITK is by far richer in 
this category. On the other hand, many important image processing functions that are in 3DVIEWNIX and that have been 
of proven utility, such as shape-based interpolation [26, 49], digital surface detection (in n-dimensions) [50], live-wire 
segmentation [51, 52], MR image intensity standardization [53], and various local scale-based processing strategies [54- 
58] are not in ITK. The visualization tools (E2) in 3DVIEWNIX are as rich and efficient as in any (commercial/non-
commercial) system. It has a rich collection of structure manipulation tools (E3) including the ability to cut, move, 
reflect, re-edit in three-dimensional space structures defined in both hard and fuzzy manner. In addition to the common 
intensity-based and geometry-based analysis tools (E4), it has advanced tools to analyze the morphology, architecture, 
and kinematics of object systems. 
 
From our review and experience in developing CAVA software and using (and contributing to) ITK, we conclude that 
there are four main groups of limitations that exist in open source software for CAVA currently. (LM1) Lack of 

comprehensiveness: This essentially means not fulfilling requirement RQ5. There simply is no software (open-source or 
otherwise) currently that covers all elements E1-E4 of CAVA comprehensively. There are no systems that provide the 
basic functional support needed to realize inexpensive stereoscopic visualization and user interaction with such displays 
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in a portable manner. (LM2) Lack of ease of use: This means inadequately fulfilling requirement RQ2 in terms of 
catering to the needs of all three user groups UG1-UG3. (LM3) Lack of speed: Both interactive and non-interactive 
operations fall short of the speed needed to make many CAVA applications practical, from future considerations as well 
as at present, especially when dealing with large data sets. (LM4) Interfaceability: This relates to inadequately fulfilling 
requirement RQ6. Our design goal for the system CAVASS presented in this paper was to try to fulfill RQ1-RQ7 as best 
as possible and overcome limitations LM1-LM4 in the best possible way. 
 

2.  METHODS 
 
A simplified architectural diagram of CAVASS appears in Figure 1. The software design aspects of CAVASS are 
described in detail in a companion paper in these proceedings [60]. The aspects of visualization are covered in another 
paper [59]. In the present paper, we focus mainly on the image processing aspects (E1) indicated by the first of the four 
CAVA functions in Figure 1. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1: The architecture of CAVASS. 

 

 

From the image processing perspective for CAVA, RQ4 and RQ5 become the most crucial requirements. Our approach in 

choosing and implementing image processing algorithms for CAVASS was guided by two principles: (i) not to go 

overboard with RQ5 but make most useful and commonly used algorithms available, (ii) give utmost importance to RQ4 

(speed). The image processing operations included in CAVASS may be divided into the following seven groups. We will 

use  = ( ,  ) I fI to denote an (nD) image where I is the image domain which is a rectangular array of volume elements 

(voxels), and f is an intensity function that assigns to each voxel v in I an intensity value f(v). f(v) is usually scalar valued 

but it may also be vectorial. In the following description, we assume that  = ( ,  )  and  ( ,  ) i i i o o oI f I f=I I  denote input 

and output images, respectively. 
 
(1) Volume of Interest (VOI): These operations are such that  o iI I⊆  and of  is a restriction of if  to oI . oI  may be 

selected interactively or by automatic means. The aim of these operations is to make subsequent operations more 

efficient and effective. 
 
(2) Interpolation: In these operations, the voxels in oI  can be of any size relative to those in iI , both may be gray or 

binary images, of  is some interpolant of if . 
 
(3) Filtering: The meaning of the term “filtering” is extremely variable as used in the literature. We consider filtering to 

be any operation such that o iI I= , oI  and iI  are both either grey or binary, and the intensities in oI  are modified 
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from those in iI . Operations that come under this category are image enhancement, noise/artifact suppression, and 

morphological and certain topological operations. 
 
(4) Segmentation: In these operations, the output is a binary or a gray image such that o iI I=  and ( )of v for ov I∈  

indicates the degree of membership of v in the object of interest. Alternatively, the output may also be a hard or 

fuzzy surface, which represents the boundary of the object. 
 
(5) Registration: These operations take two inputs, either images 1 2 and  i iI I  or surfaces 1 2 and  i iS S  and produce in the 

respective cases an image ( )2=  o iTI I  which matches with 
1i

I  or a surface ( )2=  o iS T S  that matches with 
1i

S , 

where T is a geometric transformation. T may be a rigid (6-parameter), affine (9-12 parameter) or a deformation 

(100s to 1000s of parameters) transformation. 
 
(6) Image Algebra: These operations take generally two input images either of which may be gray or binary and 

produce an output gray or binary image. A variety of operations such as addition, subtraction, multiplication, 
division, inverting, and certain types of algebraic expressions involving the input images are permitted. 

 
(7) Miscellaneous: These operations allow converting one structure (surface) representation to another, structure to 

image representation, merging different structures into a single structure system etc. 
 
Many of the E1 operations listed above under the 7 groups achieve adequate speed (< 1-2 minutes) in sequential 
implementation on a single CPU modern PC even for large image data sets. Examples of such operations are rectangular 
VOI, small neighborhood based high/low pass filtering and morphological operations, thresholding, iso-intensity surface 
generation, image subtraction/addition/multiplication, and simple structure operations. However, some of the most 
useful E1 operations are very time consuming even for medium sized images and structures on single CPU machines. 
For large data sets, these operations are quite prohibitive in time and/or in memory requirements. The most crucial 
among such CAVA operations under E1 are: interpolation, non-linear and iterative filtering methods (particularly those 
based on diffusion, distance transforms), many 3D segmentation methods, and intensity based registration methods. 
 
From the perspective of the ease of parallelizability, CAVA operations may be divided into three groups, which we will 
call Type-1, Type-2, and Type-3. Our general approach to parallelized implementation of key CAVA operations is to 
perform what we call chunking. A chunk is the data contained in a contiguous set of slices. There are many operations in 
CAVA which work, or, which can be made to work, in a more-or-less “slice-by-slice”, and hence, in a “chunk-by-chunk” 
manner. In these operations, a slice (or chunk) worth of data needs to be accessed only once to complete the operation 
(or to complete one iteration of the operation) and produce the final output. Such operations are labeled Type-1. 

Examples of such operations are: image gray level slice interpolation methods (linear, spline-based methods), shape-
based (binary as well as gray-level) interpolation, diffusive filtering, inhomogeneity correction [57], and all non-user-
steered slice-by-slice segmentation methods (such as clustering techniques). There are other CAVA operations, which 
work (chunk-by-chunk) in the above sense but some significant further operation is needed to combine the outputs 
produced by the chunks to yield the final output. Such operations are labeled Type-2. These are more difficult to 
parallelize and implement than Type-1 operations. Examples of such operations are various surface and volume 
rendering methods. We label those CAVA operations, which require each slice/chunk to be accessed more than once to 
complete the operation as Type-3. These are more difficult than Type-1 and Type-2 operations to parallelize. They can be 
characterized by graph traversal methods. The number of times a slice (chunk) is accessed depends on the shape of the 
objects represented in the image and on the orientation of the slices with respect to the object. We will focus here on 
Type-1 and Type-3 operations since they relate to E1. 
 
2.1 Parallelizing Type-1 CAVA Operations 
 
Our idea is to divide the input image data into as many chunks as there are processors in the multiprocessing system (we 
will come back to a discussion of the system environment later) and assign each chunk to a processor for executing the 
operation. The chunk size is made to fit the memory available on each processor. For some of the Type-1 operations, the 
chunks can be created by partitioning the set of slices in the input data so that there is no need for overlap among chunks. 
For other Type-1 operations (wherein neighboring slices are required), the chunks have to be defined with an overlap 
with the neighboring chunk(s). There is no inter-processor communication for Type-1 operations. We note that chunking 
for 4D and higher dimensional data is more challenging than for 3D data. In the 4D case (which is the highest 
dimensionality of image data of practical value encountered in medical imaging), each 3D image volume corresponding 
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to a given instance of the 4th dimension is divided into chunks as above. The method of processing for Type-1 operations 
may be summarized as follows. 
 
begin 
 
Step 1: Divide the given image iI  into chunks. 
 
Step 2: Assign the next set of chunks to be processed to the processors, one chunk per processor. 
 
Step 3: In each processor, carry out the Type-1 operation on the chunk assigned to it and send its result to the master 

processor. 
 
Step 4: If there are chunks remaining to be processed, go to Step 2. 
 
Step 5: Else assemble results from all processors and output the resulting image oI  or structure. 
 
end 
 
The effect of parallelization comes here from Step 3. In the above algorithm, the number of times the loop from Step 2 to 

Step 4 is executed depends on the size of iI , the number of processors available, and the RAM on each processor. In this 

manner, load balancing is achieved automatically and there is no limit on the size of iI  that can be handled irrespective 

of the number of processors available. 
 
2.2 Parallelizing Type-3 CAVA Operations 
 
Solutions to Type 3 CAVA operations can be characterized by optimal graph traversal algorithms. Although there are 
slight variations in the algorithmic expression [61] among seemingly vastly different methods such as graph cut, fuzzy 
connectedness, level-set, watershed, distance transforms, and iso-surface tracking, their algorithms have a similar 
character and behavior from the viewpoint of parallelized implementations. 
 

A general parallelization scheme for Type-3 operations is outlined below. The algorithm uses a queue jQ  (optionally) a 

list jL  associated with each chunk j

iI  of the input image iI . In the algorithm, π  is a predicate whose exact form 

depends on the particular Type-3 operation we are dealing with. 
 
begin 
 

Step 1: Divide the given image iI  into chunks , 1,....,j

i j N=I . 
 
Step 2: Initialization. A set of voxels are identified for initializing the underlying Type-3 operation. These voxels are 

placed in the queues associated with the chunks to which they belong. 
 
Step 3: While any of the queues , 1,....,jQ j N= , is not empty, do Steps 4-7. 
 

Step 4: Find a free processor jP  and load it with  and j

i jQI  and jL . 
 
Step 5: While jQ  is not empty, jP  executes Steps 6-7. 
 

Step 6: Remove a voxel v from jQ , evaluate ( )vπ , and place v in jL , perform appropriate output operations. 
 

Step 7: If ( )vπ  is true, place the appropriate neighbors of v in the queues they belong to if they are not already in their 

designated lists. 
 
Step 8: Combine all outputs from all processors to output oI  or the output structure. 
 
end 

 
In the above algorithm, parallelism is achieved via Steps 4-7. It is the task of the master processor to keep a watch on the 
processors whose queues become empty and who therefore may become idle. A processor may be activated because 
there are chunks whose queues are not empty. The entire process stops at a point when all queues become empty. In 
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Steps 6-7, the exact nature of the operations depends on the specific Type-3 operation being implemented. Step 7 also 
calls for inter-processor communication which can be handled in several ways to keep it efficient. The method we have 

implemented is to allow one slice overlap between neighboring chunks and in the associated jQ  and jL . 
 
2.3 Multiprocessing Environment 
 
At present, there are two choices available for parallel implementation – either in multiprocessor systems (MPS) via 
multi-threading or via distributed processing in a cluster of workstations (COWs). After extensive experiments with 
several Type-1, Type-2, and Type-3 operations in MPS and in a COW, we have determined that, for CAVA, COWs offer 
significantly higher speed/dollar than MPS. In the following section, therefore, we report the results on a COW, except 
when results are compared with ITK, we used a dual processor system (3.4 GHz, 4GB RAM). Each workstation in the 
COW we constructed is a 3.4 GHz single CPU Pentium PC with 4GB RAM. The workstations are networked by a 1G-

bit/sec connection. 
 

3.  RESULTS AND DISCUSSION 
 
All E1 CAVA operations implemented in CAVASS, sequential and parallel, are tested with the following three regular, 

large, and super data sets. (DS1): a 3D MR image of the brain, size 256×256×46 (6.03 MB); (DS2): a 3D CT image of the 

torso, size 512×512×469 (240.65 MB); (DS3): a 3D CT image of the visible woman head, size 1024×1024×417 (872.8 
MB). The regular data set DS1 represents a typical MRI clinical study. DS2 represents a typical, large clinical CT study 
of the thorax. DS3 is a very large data set, artificially created by in-slice interpolation of the visible woman CT data set 
[62], employed to really push the algorithms to their limit. 
 
We did extensive comparisons on a variety of E1 CAVA operations (Type-1 and Type-3) in both sequential and parallel 
modes in various configurations of the COW. We also compared the speed of these operations as implemented in ITK in 
sequential mode and parallel mode (when available). The parallel implementations in ITK are in the MPS environment. 
Since MPS are very expensive we acquired a dual-processor MPS for testing purposes only. Therefore, to make the 
comparison fair, in such instances, the COW was configured with only two single processor CPU workstations. Our 
results are summarized in Table 1. 
 

Regular 

(DS1) 

Large 

(DS2) 

Super 

(DS3) Operation System 

seq parallel seq parallel seq parallel 

ITK 2.9 1.7 87.7 62.8 [2] Failed Failed 
Interpolation 

CAVASS 0.6 1 [2] 54.9 14.9 [2] 139.1 49.2 

ITK 57  2026.6  Failed  Anisotropic Diffusive 
Filtering CAVASS 52.7  1664.2    

ITK 1.5  65.2  Failed  
Gaussian Filtering 

CAVASS 0.4  18.3  83  

ITK 10.5  473.7  Failed  
Distance Transform 

CAVASS 18.7  916.5  3882.4  

ITK 0.3  11.4  340.6  
Thresholding 

CAVASS 0.1  2.7  20.2  

ITK 108.4  Failed  Failed  Fuzzy Connected 
Segmentation CAVASS 49.5 17.8 843.7 298.6 [5] Failed 1312.6 [5] 

ITK 57.2  Failed  Failed  
Registration (rigid) 

CAVASS 56.1 8.6 [5] 1860.6 301.6 [5] 3863.4 1089.1 [5] 

ITK 208.3  Failed  Failed  Registration (affine – 
12 parameters) CAVASS 155.3 25.1 3602.4 1018.6 [5] 13,111 3662.2 [5] 

 
Table 1: Time in seconds for the various operations for the regular (6 MB), large (241 MB), and super (873 MB) image data sets. The 

number of processors used is indicated in square brackets in case of parallel operations. No entries indicate that the 
particular operation was either not tested or not available. 

 
We note that considerable speed differences exist between CAVASS and ITK for the image processing operations. We 
attribute the higher speed of CAVASS to several factors. First, many of the implementations in ITK are very general on 
various counts such as image dimensionality, number of bits per pixel, and scalar versus vectorial. In CAVASS, we went 
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for generality to the extent it is needed and in most common use. Second, implementations in CAVASS (many of which 
come from 3DVIEWNIX) are more tightly monitored, being an effort within a single group. Third, in ITK, because of its 
openness, and contributions of implementations coming from around the world, testing and optimization become really 
challenging. 
 
The times reported in Table 1 represent the total operational time for each listed CAVA operation. Some of these 

operations include a mix of Type-1 and Type-3 algorithms in addition to other house keeping operations such as 

input/output. We may note that for pure Type-1 operations (interpolation, scale computation), we achieve a speedup 

factor of 0.65-1.8 for parallelization. Here the speedup factor is defined as ( )/s p pt t n  where  and s pt t  are the time taken 

for the sequential and parallel implementation of the same operation, and pn  is the number of processors used in parallel 

implementation. This factor is, quite understandably, lower, 0.56, for pure Type-3 operations (e.g, fuzzy connectedness). 

Among the operations listed in Table 1, registration is the most time consuming. In these operations, normalized mutual 

information was used to register the two images [63]. The second image was created from the first by applying a known 

(rigid or affine) transformation. The speedup factor achieved in this instance is excellent. With a COW of about 10 PCs, 

therefore, we can expect to complete a 12-parameter affine registration of extremely large data sets in about 30 minutes. 

Parallelized deformable registration is currently being implemented in CAVASS. 
 
In conclusion, we found, for CAVA operations, COWs are far more cost- and speed-effective than MPS. The recognition 
of the three types of CAVA operations helps in systematizing the parallelization efforts. This also enabled CAVASS to 
handle extremely large data sets. The implementations of the same CAVA image processing operations in CAVASS offer 
considerably greater speed than in ITK. CAVASS offers easy interface to a number of other software systems including 
ITK. Since it provides an easy to use GUI as in its predecessor 3DVIEWNIX, CAVASS can be readily used in 
applications. It is designed to serve all user groups (UG1-UG3) except clinical end users. 
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